(5-5x)(6-5x)=75x^2

Simple and best practice solution for (5-5x)(6-5x)=75x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5-5x)(6-5x)=75x^2 equation:



(5-5x)(6-5x)=75x^2
We move all terms to the left:
(5-5x)(6-5x)-(75x^2)=0
determiningTheFunctionDomain -75x^2+(5-5x)(6-5x)=0
We add all the numbers together, and all the variables
-75x^2+(-5x+5)(-5x+6)=0
We multiply parentheses ..
-75x^2+(+25x^2-30x-25x+30)=0
We get rid of parentheses
-75x^2+25x^2-30x-25x+30=0
We add all the numbers together, and all the variables
-50x^2-55x+30=0
a = -50; b = -55; c = +30;
Δ = b2-4ac
Δ = -552-4·(-50)·30
Δ = 9025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9025}=95$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-95}{2*-50}=\frac{-40}{-100} =2/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+95}{2*-50}=\frac{150}{-100} =-1+1/2 $

See similar equations:

| 12(4x − 12) = 5(12)(4x) − (12)(12) = 52x − 6 = 5+6   +62x = 11 | | v/8+10=11 | | 2x-7x+5=20 | | -7/2-1/5u=-8/3 | | 12=k/2-(-9) | | 3x+3-33=x | | 8x-3(4x+8)+9x+15=17 | | (2x+3)^2+25=0 | | 5/3x+1/3x=9/1/3+7/3 | | -3x-4/2=7 | | 5-(-2u=-9 | | x-3x2=-6 | | 4+1n-9=-9+1+2n+12 | | 1+3(x)=5-15 | | 3(2x+5)=x+4-3(x-2) | | x+x+2+x+4=-219 | | X^2-4x^2+6x-10x=-5 | | 5h(h+4)=0 | | -11+1x=9+3x | | 5–-2u=-9 | | 2h-8=h+1 | | 9-(5z+2)=7 | | -11+1x=11+9 | | 2/x-5=-5/x+6+(8/(x-5)(x+6)) | | ƒ(x)=–4x–5 | | 9x-(2x-12)=38 | | 2/x-5=-5/x+6+8/(x-5)(x+6) | | 4r-15=1 | | 10x+15=5(2×+3) | | 4x-1.9=22.2 | | 3x/x^2-9=9/x^2-9-4/X+3 | | 4(x+5)=3(x-5)+x |

Equations solver categories